Development of an aluminium restricted buckling bracing with a dissipative component (BRD_AL device)

Ricardo Sousa Alves Ferreira

Supervisors:

Professor Jorge Proença (PhD, Associate Professor IST, CERIS Senior Researcher)

Professor António Gago (PhD, Assistant Professor IST, CERIS Senior Researcher)

Presentation outline

- Objectives;
- Assessment of the mechanical behaviour of aluminium alloys (Experimental campaigns);
- Design and assessment of the dissipative component of the bracing system (BRD_AI device);
- Design and assessment of the bracing system;
- Case study analyses Application of the bracing system to a Pilotis type building;
- Recommendations for future studies.

U. PORTO

Objectives

- Design of a buckling restrained bracing system using only extruded aluminium alloy members;
- With two components: an elastic component and a dissipative component (BRD_AI device) easy to replace after an earthquake

- Stable hysteretic behaviour when
 subjected to axial displacements (both in tension and compression);
- To be used in the seismic protection of specific R/C buildings (Pilotis buildings)

TÉCNICO

ւն

ICIST

U. PORTO

* 🖒

Assessment of the mechanical behaviour of aluminium alloys

<u>Also</u>

Selection of thermal treatments for the AW 6082 alloy

- 2. Solution treatment at 535°C (45 min)+ageing at 100 °C (32h);
- 3. No solution treatment +ageing at 350 °C (2h)
- 4. No solution treatment + ageing at 280 °C (8h)

Enhance ductility of the AW 6082 alloy

universidade de aveiro Assessment of the mechanical behaviour of aluminium alloys

Objectives:

- Assess the mechanical behaviour of the alloys, especially when subjected to cyclic loading;
- Determine the most suitable alloy to be used in the composition of the BRD_AL device;

* 🔿

Aluminium alloy selection for the BRB_AI – Experimental tests

Beside the reference alloys 6082-T6 and the 5083-H1, cyclic tests were performed to the alloys that showed the best performance in terms deformation capacity in the uniaxial tests – the 6082 AG100/1920 and the 6082 -AN350/120 alloys

U. PORTO

* 🔿

universidade

de aveiro

ıfi

ICIST

/NE<

TÉCNICO

PD

FCT PhD

Results of experimental uniaxial cyclic tests

ANALYSIS AND MITIGATION OF RISKS IN INFRASTRUCTURES | INFRARISK-

Selection of aluminium alloy for the composition of the dissipative component (BRB_AI device)

Design and assessment of the dissipative component of the bracing system (BRD_AI device)

U. PORTO

※ Ċ

universidade de aveiro

- Parametrization of the non linear behaviour of the selected alloy ;
- Numeric modeling of 2 idealized configurations for the BRD_Al device;
- Evaluation of the cyclic performance of the idealized configurations ;
- Selection of the most suited configuration for the BRD_device

Parametrization of the cyclic performance of the 6082-AN350/120 aluminium alloy

Basis : Simulation of cyclic test of the 6082AN350/120 specimen

- Material behavior:
 - The alloy as an isotropic material assuming the generalized Hooke law in the elastic domain;
 - Assumes a combined non linear isotropic and kinematic hardening (Chaboche Model), considering the Von Mises yielding criterion for its inelastic behaviour;
 - Assume ductile damage where :

ICIST

1) Damage initiation triggered by specific strain equivalent plastic value;

U. PORTO

2) Damage evolution defined considering a exponential evolution law for the plastic decay and limited dissipation energy after damage initiation.

Numeric model of the test specimen used in the cyclic test of the 6082AN350/120 alloy

Earthquake Engineering - Earthquakes and Tsunamis - InfraRisk

Idealized configurations for the BRB_AL device

Configuration T1

Fig 1.

TÉCNICO LISBOA

ւն

ICIST

ZNE<

Assumptions:

Two different configurations of the device admitting a reference yielding force of 200 $\ensuremath{\mathsf{kN}}$

Dissipative parts (indicated in green) are composed by the 6082AN350/120.

Non-dissipative parts are composed of the 6082-T6 alloy (in white)

U. PORTO

* 🔿

universidade

de aveiro

Evaluation of the cyclic performance of the BRD_AI device

Numeric simulation of cyclic tests of configurations T1 and T2 using software ABAQUS

If

ICIST

ZNE<

TÉCNICO

* 🔿

universidade

de aveiro

U. PORTO

- length L (L=300 to 1000 mm);
- Same cross section configuration in each case;
- Cyclic performance evaluation- ECC report nº45 evaluation parameters

SNEG, (fraction = -1.0)

(Avg: 75%)

Evaluation of the cyclic performance of the BRD_AI device

The T2 configuration showed the highest:

- Values of deformation capacity ;
- 2) Highest number of stable cycles under inelastic deformation;
- Highest values of intrinsic dissipated energy;

ıfi

TÉCNICO

Selection of the T2 configuration for the BRD_Al device

ICIST

U. PORTO

* 🔿

universidade

de aveiro

ANALYSIS AND MITIGATION OF RISKS IN INFRASTRUCTURES | INFRARISK-

Design and assessment of the bracing configuration

- component of the bracing and the BRD_Al device;
- 2. Assessment of cyclic behaviour of the bracing system considering different lengths of the BRD_Al device $(L_p=300, 500, 1000 e 5000 mm);$

1. Design of the connecting parts between the elastic

- Definition of expressions to relate the length of the device with its maximum deformation and cyclic stability;
- 4. Definition of a simplified bilinear model to describe the cyclic behaviour of the bracing system.

Design and assessment of the bracing configuration

- The effects of geometric imperfections on the cyclic behaviour of the bracing;
- The effects of the length of the elastic and dissipative components in I cyclic behaviour of the bracing

TÉCNICO

ISBOA

* 🔿

ANALYSIS AND MITIGATION OF RISKS IN INFRASTRUCTURES | INFRARISK-

Bracing analyses – Assessment of the global behavior of the bracing system

Assumptions:

- Pinned connection: Application of additional restraining element -Collar profile (formulation proposed by Jing-Zhong et al.)
- Two possible cases of geometric imperfections - Case A (local imperfections) and Case B (global imperfection);

TÉCNICO LISBOA * 🔿

Assessment of the global behavior of the bracing system

Observation of the maximum axial deformation achieved in each scenario during stable cyclic behaviour

U. PORTO

de aveiro

lf

ICIST

TÉCNICO

Bracing analyses – Assessment of the global behavior of the bracing system

Case A and B – General dimensions

Case A – Initial imperfections

Case B – Initial imperfections

(e_{global})

mm 6,4

L _t	L _p	L _e	L _{collar}
mm	mm	mm	mm
6400	300	6100	1280
	500	5900	
	1000	5400	
	5000	1400	

Lp	(e _p)	(e _e)
mm	mm	mm
300	0,3	6,1
500	0,5	5,9
1000	1	5,4
5000	2,49*	1,4

Example of the cyclic behaviour of case A with L_p =1000 mm

PD ·

L_p mm

Example of the cyclic behaviour of case B with L_P =1000 mm

universidade de aveiro

* 🔿

U. PORTO

Bracing analyses – Assessment of the global behavior of the bracing system

Results were used for:

1) Definition of expressions to determine the optimum length of dissipative component L_p in relation to the maximum imposed displacement d_{bd} and the maximum strain of the bracing $\varepsilon_{t max}$

Allowed :

TÉCNICO

ıfi

ICIST

- 1. The definition of the length of the components of the bracing;
- 2. The determination of the gap Δ_{axial} necessary to prevent contact between the bicylindrical profile and the connection cone when in compression

U. PORTO

※ Ċ

universidade

de aveiro

2) Parametrization of the cyclic behaviour of the bracing system – Theoretic Bilinear Model proposed by Zsarnócsay et al., instead of the model proposed in the EN 15129

Allowed :

- 1. A more accurate approximation of the transition between the elastic and the plastic domain;
- 2. A more accurate approximation of the hardening process

Analysis of a case study

Existing building in Lisboa, typical example of the "Pilotis building"

- 1. The structure in its present condition;
- The braced structure (and the effects of the bracing system in the reduction of the seismic response)

TÉCNICO

ւն

ICIST ZNE<

Case

study

universidade de aveiro

Case study analyses

Numerical model of the building using the SeismoStruct software.

Definition of R/C members based on the project information and the design codes used at the time of construction;

Structural elements simulated using fine elements considering distributed plasticity;

Simulation of infill elements using macro-elements;

Bracing elements were simulated using frame elements

ICIST

Non linear behaviour models of materials :

Rebar (Menegotto-Pinto model);

Concrete (Mander et al. model, considering the Martinez-Rueda e Elnashai for cyclic behaviour);

Infill elements: Crisafulli model

Dissipative bracing : Bilinear model proposed by Zsarnócsay et al.

Case study - Evaluation of seismic performance - EN 1998-1 and EN 1998-3 specifications

Non Linear Static Analyses (AENL)

Response specters of seismic actions type 1 and 2, considering the return periods correspondent to Damage levels DL (damage limitation) and SD (Significant damage) (T_R =73 e 308 years, respectively) as defined in the EN1998-3

Additional performance requirement:

compliance with the Significant Damage level SD for the relevant seismic action (Type 1) with T_R =475 years.

U. PORTO

universidade

de aveiro

Dynamic analyses (AT)

TÉCNICO

Compatible artificial accelerograms of relevant seismic action (Type 1) for T_R =308 e T_R =475 years :

ICIST

Case study analyses

Results:

- Concentration of interstorey drift on the first floor;
- Insufficient shear capacity of columns in the transition between the ground and first floor to comply with SD damage level;

Ductile mechanisms:

PD +

FCT PhD

- Acceptable performance relatively to LD and SD damage levels (relevant seismic action type with T_R=73 e 308 years);
- Unacceptable performance relatively to SD damage level (relevant seismic action type with T_R=475 years;

ICIST

ZNE<

U. PORTO

* 🔿

universidade

de aveiro

ıſ

TÉCNICO

Assessment of the seismic performance - Scenario 1

ANALYSIS AND MITIGATION OF RISKS IN INFRASTRUCTURES | INFRARISK-

Analysis of a case study

Intervention strategy

- Increase of columns shear capacity ;
- Take advantage of the structure's seismic response configuration;
- Apply the bracing system between the ground floor and the first floor.

• Reduce the first floor displacement;

ıfi

ICIST

TÉCNICO

- Not increase (excessively) the interstorey drift of the upper storeys;
- Comply with the damage level SD when the structure is subjected to the reference seismic action with T_R =475 years.

U. PORTO

universidade

Definitionoftheelasticanddissipativecomponentslengths(expressionsdefinedpreviously and considering the maximum driftof the 1st floor

Application of Kasai 's methodology

Determination of the necessary global stiffness of the bracing K_d to achieve the required displacement reduction

Quantification of the number of necessary bracings

Application of the bracing elements between columns between the ground and the first floors (X and Y direction)

ANALYSIS AND MITIGATION OF RISKS IN INFRASTRUCTURES | INFRARISK-

Case study analyses

Assessment of the seismic performance - Scenario 2

Case study

Partial conclusions (resume):

- <u>Current building:</u> When the infill elements are considered in the numeric model, the soft-storey mechanism is observed for seismic action lower than those required for the SD damage level.
- In AT e AENL analyses :
- 1. Deformation results obtained for the first and last floors, in both scenarios, are similar;
- 2. Interstorey drift results for intermediate floors were slightly different. Correction of results obtained from AENL is recommended , for example, considering the extended N2 method proposed by Fajfar;
- <u>Bracing behaviour</u>: Maximum deformation values observed in the bracings were within the limits of stability of its cyclic behavior and, therefore, the expected behavior was confirmed;
- <u>Kasai's methodology</u>: Since the pre-established reduction of the horizontal displacements was verified, it can be considered as effective method to estimate the number of bracings to a achieve a pre-determinate displacement reduction;
- <u>Structural intervention Stategy</u>: Although there was an increase of the interstorey drifts of the upper storeys, the main objectives of this structural intervention strategy were achieved;

universidade

Recommendations for future studies (in brief)

U. PORTO

- Low cyclic fatigue capacity of the BRD_Al device, considering different imposed displacement cycles;
- **Cyclic behavior of the BRD_Al design**, possibly considering different dimensions of the cross section of both the bicylidrical profile and the dissipative core;
- Cyclic behavior of the complete bracing system
- Cyclic behaviour of connection elements :

1.Between the elastic and plastic components;

2.Between the bracing and the structure;

- Development of an incremental dynamic analysis, considering different levels of seismic actions, different lengths
 of each of the bracing's components and different distributions of the bracing within the structure <u>to assess the</u>
 variability of the seismic response of R/C buildings with this type of bracing;
- Application of this bracing system in the reduction of the seismic response of other types of R/C buildings and other types of structures such as metallic or R/C bridges.

Acknowledgements:

The InfraRisk Doctoral Programme and the FCT – Fundação para a Ciência e Tecnologia for the support through the PD/BD/135212/2017 PhD Grant.

U. PORTO

Thank you for your attention.

